ವಿಷಯಕ್ಕೆ ಹೋಗು

ಸಂಯೋಜನೆಗಳು

ವಿಕಿಪೀಡಿಯದಿಂದ, ಇದು ಮುಕ್ತ ಹಾಗೂ ಸ್ವತಂತ್ರ ವಿಶ್ವಕೋಶ

ಗಣಿತ ಕ್ಷೇತ್ರದಲ್ಲಿ "ಸಂಯೋಜನೆಗಳು" (ಕಾಂಬಿನೇಷನ್ಸ್) ಎನ್ನುವ ಪದವನ್ನು ಒಂದು ಸಂಗ್ರಹದಿಂದ ವಸ್ತುಗಳನ್ನು ಎಷ್ಟು ವಿಧಗಳಲ್ಲಿ ಆಯ್ಕೆ ಮಾಡಿಕೊಳ್ಳಬಹುದು ಎಂಬುದನ್ನು ಸೂಚಿಸಲು ಬಳಸುತ್ತಾರೆ. ಇದಕ್ಕೆ "ಸಂಚಯಗಳು" ಎಂದು ಕೂಡಾ ಕರೆಯಬಹುದು. ಉಹಾಹರಣೆಗೆ ಒಂದು ಸಂಗ್ರಹದಲ್ಲಿ ನಾಲ್ಕು ಹೂಗಳಿವೆ - ಮಲ್ಲಿಗೆ, ಸೇವಂತಿಗೆ, ಗುಲಾಬಿ ಮತ್ತು ಸಂಪಿಗೆ. ಇವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಎರಡು ಹೂಗಳನ್ನು ಆರಿಸಬೇಕು ಎಂದುಕೊಳ್ಳಿ. ಒಟ್ಟು ಆರು ಸಾಧ್ಯತೆಗಳಿವೆ ಎಂಬುದನ್ನು ನಾವು ನೋಡಬಹುದು. {ಮಲ್ಲಿಗೆ, ಸೇವಂತಿಗೆ}, {ಮಲ್ಲಿಗೆ, ಗುಲಾಬಿ}, {ಮಲ್ಲಿಗೆ, ಸಂಪಿಗೆ}, {ಸೇವಂತಿಗೆ, ಗುಲಾಬಿ}, {ಸೇವಂತಿಗೆ, ಸಂಪಿಗೆ}, {ಗುಲಾಬಿ, ಸಂಪಿಗೆ}. {ಮಲ್ಲಿಗೆ, ಸೇವಂತಿಗೆ} ಮತ್ತು {ಸೇವಂತಿಗೆ, ಮಲ್ಲಿಗೆ} ಇವುಗಳಲ್ಲಿ ಯಾವ ವ್ಯತ್ಯಾಸವೂ ಇಲ್ಲ ಎಂಬುದನ್ನೂ ಗಮನಿಸಿ. ಕ್ರಮಸಂಚಯಗಳು ಅಥವಾ ಪರ್ಮ್ಯುಟೇಷನ್ಸ್ ಎಂದರೆ ಹೂವುಗಳನ್ನು ಜೋಡಿಸುವ ಕ್ರಮವೂ ಮುಖ್ಯ. ನಾಲ್ಕು ಹೂವುಗಳಲ್ಲಿ ಎರಡರ ಕ್ರಮಸಂಚಯಗಳ ಸಂಖ್ಯೆ ೧೨ ಎಂಬುದನ್ನು ನೀವು ಊಹಿಸಬಹುದು. ಒಂದು ಸಂಗ್ರಹದಲ್ಲಿ n ವಸ್ತುಗಳಿದ್ದರೆ ಆ ಸಂಗ್ರಹದಿಂದ k ವಸ್ತುಗಳನ್ನು ಆರಿಸಿಕೊಳ್ಳಲು ಎಷ್ಟು ವಿಧಗಳಿವೆ ಎಂಬುದನ್ನು ಎಂದು ಅಥವಾ ಎಂದು ಬರೆಯುತ್ತೇವೆ. ಸಂಗ್ರಹದಲ್ಲಿರುವ ವಸ್ತುಗಳಲ್ಲಿ ಒಂದನ್ನು ಆರಿಸಲು n ವಿಧಗಳಿವೆ ಎಂಬುದನ್ನು ಗಮನಿಸಿ. ಹೀಗಾಗಿ . ಹೀಗೇ ಸಂಗ್ರಹದಲ್ಲಿರುವ ಎಲ್ಲಾ ವಸ್ತುಗಳನ್ನೂ ಆಯ್ದುಕೊಳ್ಳಲು ಒಂದೇ ವಿಧಾನ. ಹೀಗಾಗಿ .

ಇದನ್ನು ಹೀಗೂ ಬರೆಯುತ್ತೇವೆ - ಇಲ್ಲಿ ಸಂಯೋಜನೆಗಳ ವಿಷಯದಲ್ಲಿ ಕೆಳಕಂಡ ಸಮೀಕರಣವನ್ನು ಗಮನಿಸಿ.

ಇದನ್ನು ಬಳಸಿ ಎಷ್ಟೆಂದು ಕಂಡುಹಿಡಿಯಬಹುದು. ಪ್ಯಾಸ್ಕಲ್ ತ್ರಿಕೋನವನ್ನು ರಚಿಸಲು ಈ ಸಮೀಕರಣ ಸಹಾಯಕ[]. ಈ ಸಮೀಕರಣ ಬಳಸುವಾಗ k ಶೂನ್ಯವಾದರೆ ಎಂಬುದನ್ನು ನೆನಪಿಡಬೇಕು. ಕೆಳಕಂಡ ಸಮೀಕರಣವನ್ನು ಬಳಸಿ ಕೂಡಾ ಸಂಯೋಜನೆಗಳ ಸಂಖ್ಯೆಯನ್ನು ಕಂಡುಹಿಡಿಯಬಹುದು

.

ಗಣಕವಿಜ್ಞಾನದಲ್ಲಿ ಕೆಳಗಿನ ಸೂತ್ರ ಬಳಸಿ ಸಂಯೋಜನೆಗಳ ಸಂಖ್ಯೆಯನ್ನು ಲೆಕ್ಕ ಹಾಕಬಹುದು.

.

ಉದಾಹರಣೆ

[ಬದಲಾಯಿಸಿ]

೫೨ ಇಸ್ಪೀಟ್ ಎಲೆಗಳಲ್ಲಿ ಐದನ್ನು ಎಷ್ಟು ರೀತಿಗಳಲ್ಲಿ ಆರಿಸಬಹುದು?

ಉಲ್ಲೇಖಗಳು

[ಬದಲಾಯಿಸಿ]